Product Description

SDSX Grooved Flexible Coupling

Systems & Performance

SDSX Grooved mechanical couplings(GMC) are available in both rigid and flexible models.

Flexible couplings are designed to accommodate axial displacement, rotation and a minimum 1 degree of angular movement.

Flexible couplings are used in applications
that call for curved or deflected layouts or when
systems are exposed to outside forces beyond
normal static conditions.such as seismic events or where vibration or noise attenuation are a concern.

 

Description

SDSX Flexible coupling is designed from 1″-12″, and pressure is 300psi/2070 kPa.

Bolts/Nuts: Heat-treated plated carbon steel, meeting its mechanical properties Grade 8.8.

Gaskets: EPDM, silicon rubber and Nitrile rubber.

Dimensions
 

Nominal
Size mm/in
Pipe O.D
mm/in
Working
Pressure
PSI/MPa
Bolt Size Dimensions mm/in
No.-Size   mm Ø L H
25
1
33.7
1.327
300
2.07
2-3/8*45 60   
2.362
102 
4.016
45 
1.772
32
42.4
1.669
300
2.07
2-3/8*45 70 
2.756
106 
4.173
44 
1.732
40
48.3
1.900
300
2.07
2-3/8*45 73 
2.874
108 
4.252
44 
1.732
50
2
57.0
2.245
300
2.07
2-3/8*55 83
3.268
122 
4.803
45 
1.772
50
2
60.3
2.375
300
2.07
2-3/8*55 87
3.425
123 
4.843
44 
1.732
65
73.0
2.875
300
2.07
2-3/8*55 100 
3.937
138 
5.433
44 
1.732
65
76.1
3.000
300
2.07
2-3/8*55 103 
4.055
142 
5.591
45 
1.772
80
3
88.9
3.500
300
2.07
2- 1/2*60 117 
4.606
166 
6.535
45 
1.772
100
4
108.0
4.250
300
2.07
2- 1/2*65 137 
5.393
188 
7.401
48 
1.889
100
4
114.3
4.500
300
2.07
2- 1/2*65 139 
5.472
190 
7.480
49 
1.929
125
5
133.0
5.250
300
2.07
2- 1/2*75 163 
6.417
210 
8.268
49 
1.929
125
5
139.7
5.500
300
2.07
2- 1/2*75 168 
6.614
218 
8.583
49 
1.929
150
6
159.0
6.250
300
2.07
2- 1/2*75 192 
7.559
242 
9.528
49 
1.929
150
6
165.1
6.500
300
2.07
2- 1/2*75 193 
7.598
241 
9.488
49 
1.929
150
6
168.3
6.625
300
2.07
2- 1/2*75 198.5 
7.815
249 
9.803
50
1.969
200
8
219.1
8.625
300
2.07
2-5/8*85 253 
9.961
320 
12.598
59
2.323
250
10
273
10.748
300
2.07
2-7/8*130 335 
13.189
426 
16.772
68
2.677
300
12
323.9
12.752
300
2.07
2-7/8*130 380 
14.96
470 
18.504
65
2.559

Material Specification

Housing: Ductile iron conforming to ASTM A-536, grade 65-45-12.

Housing Coating: Paint red and orange

• Optional: Hot dipped galvanized, electro galvanized.

Gaskets

 

• EPDM: Temperature range -34ºC to +150ºC. Recommended for hot water service within

the specified temperature range plus a variety of dilute acids,oil-free air and many chemical services.
 

NOT RECOMMENDED FOR PETROLEUM SERVICES.

 

• Silicon Rubber: Temperature range -40ºC to +177ºC. Recommended for drinking water,

hot water, high-temperature air and some high-temperature chemicals.

NOT RECOMMENDED FOR PETROLEUM SERVICES.

 

• Nitrile Rubber: Temperature range -29ºC to +82ºC. Recommended for petroleum products,

air with oil vapors, vegetable and mineral oils within the specified temperature range.

NOT RECOMMENDED FOR HOT WATER

SERVICES OVER +150°F/+66ºC OR FOR HOT

DRY AIR OVER +140°F/+60ºC.

Installation

Certification



Showroom

Application

Package and shipment

Production and quality control


 

flexible coupling

Can flexible couplings be used in heavy-duty applications such as mining and construction?

Yes, flexible couplings can be used in heavy-duty applications such as mining and construction, where the equipment operates under challenging conditions and encounters high loads, vibrations, and misalignments. Flexible couplings offer several advantages that make them suitable for these demanding environments:

  • Misalignment Compensation: Heavy-duty equipment in mining and construction may experience misalignment due to the rough terrain, uneven surfaces, or heavy loads. Flexible couplings can handle both angular and parallel misalignment, ensuring smooth power transmission even in these adverse conditions.
  • Shock and Vibration Absorption: Mining and construction operations often involve high-impact loads and vibrations. Flexible couplings can dampen and absorb these shocks, protecting the connected components from damage and reducing wear and tear on the equipment.
  • Torsional Stiffness: While flexible couplings are designed to accommodate misalignment, they still maintain a certain level of torsional stiffness to transmit torque efficiently. This is crucial in heavy-duty applications, where high torque is required to drive the machinery.
  • Corrosion and Contamination Resistance: In mining and construction environments, equipment may be exposed to dust, dirt, water, and chemicals. Flexible couplings made from corrosion-resistant materials can withstand these harsh conditions, ensuring reliable performance and longevity.
  • High Torque Transmission: Heavy-duty machinery often requires high torque transmission between the driving and driven components. Flexible couplings are capable of transmitting high torque efficiently, which is essential for the operation of large-scale equipment.
  • Reduced Downtime: The robustness and reliability of flexible couplings in heavy-duty applications contribute to reduced downtime. By minimizing the impact of misalignment, shocks, and vibrations, flexible couplings help prevent unexpected breakdowns and maintenance issues.

When selecting a flexible coupling for heavy-duty applications, it’s important to consider the specific requirements of the machinery and the operating conditions. Factors such as the type of equipment, torque and speed requirements, environmental conditions, and expected loads should be taken into account.

Overall, flexible couplings are a versatile solution for power transmission in heavy-duty applications, providing the necessary flexibility, durability, and performance to withstand the challenges posed by the mining and construction industries.

flexible coupling

How does a flexible coupling accommodate changes in shaft alignment due to thermal expansion?

Flexible couplings are designed to accommodate changes in shaft alignment that occur due to thermal expansion in rotating machinery. When equipment operates at elevated temperatures, the materials used in the shafts and other components expand, causing shifts in the relative positions of the connected shafts. This thermal expansion can lead to misalignment, which, if not addressed, may result in additional stress on the equipment and premature wear.

Flexible couplings employ specific design features that allow them to handle thermal-induced misalignment effectively:

  • Flexibility: The primary feature of a flexible coupling is its ability to flex and deform to some extent. This flexibility allows the coupling to absorb small amounts of angular, parallel, and axial misalignment that may result from thermal expansion. As the shafts expand or contract, the flexible coupling compensates for the misalignment, helping to maintain proper alignment between the two shafts.
  • Radial Clearance: Some flexible couplings, such as elastomeric couplings, have radial clearance between the coupling’s mating parts. This radial clearance provides additional room for the shafts to move laterally during thermal expansion without creating excessive forces on the coupling or connected equipment.
  • Sliding Elements: Certain flexible couplings feature sliding elements that can move relative to each other. This capability allows the coupling to accommodate axial displacement resulting from thermal expansion or other factors.
  • Flexible Element Materials: The materials used in the flexible elements of the coupling are chosen for their ability to handle the temperature range experienced in the application. Elastomeric materials, for example, can be selected to withstand high temperatures while still maintaining their flexibility.

It is essential to understand that while flexible couplings can compensate for some degree of thermal-induced misalignment, there are limits to their capabilities. If the thermal expansion exceeds the coupling’s compensating range, additional measures, such as incorporating expansion joints or using specialized couplings designed for greater misalignment compensation, may be necessary.

When selecting a flexible coupling for an application with potential thermal expansion, it is crucial to consider the expected operating temperature range and the level of misalignment that may occur due to thermal effects. Working with coupling manufacturers and consulting coupling catalogs can help in choosing the most suitable coupling type and size for the specific thermal conditions of the machinery.

flexible coupling

Can flexible couplings be used in applications with varying operating temperatures?

Yes, flexible couplings can be used in applications with varying operating temperatures. The suitability of a flexible coupling for a specific temperature range depends on its design and the materials used in its construction. Different types of flexible couplings are available to handle a wide range of temperature conditions, making them versatile for use in various industries and environments.

High-Temperature Applications:

For applications with high operating temperatures, such as those found in certain industrial processes, exhaust systems, or high-temperature machinery, flexible couplings made from materials with excellent heat resistance are used. These materials may include stainless steel alloys, heat-treated steels, or specialized high-temperature elastomers. High-temperature flexible couplings are designed to maintain their mechanical properties, including flexibility and torque transmission capabilities, even at elevated temperatures.

Low-Temperature Applications:

Conversely, for applications in extremely cold environments or cryogenic processes, flexible couplings constructed from materials with low-temperature resistance are employed. These couplings are designed to remain flexible and functional at very low temperatures without becoming brittle or losing their ability to handle misalignment. Some low-temperature couplings may use special polymers or elastomers with excellent cold-temperature performance.

Temperature Range Considerations:

When selecting a flexible coupling for applications with varying operating temperatures, it is essential to consider the specific temperature range in which the coupling will operate. Some flexible couplings have a wider temperature range, allowing them to function effectively in both high and low-temperature environments. However, in extreme temperature conditions, specialized couplings may be necessary to ensure reliable performance and prevent premature failure.

Manufacturer Guidelines:

Manufacturers of flexible couplings provide guidelines and specifications regarding the temperature range of their products. It is crucial to consult the manufacturer’s documentation to ensure that the chosen coupling is suitable for the intended operating temperature of the application. Using a coupling beyond its recommended temperature range can lead to performance issues, reduced efficiency, or even failure.

Applications:

Flexible couplings with varying temperature resistance find use in numerous industries, including aerospace, automotive, manufacturing, power generation, and more. Whether in high-temperature exhaust systems, low-temperature cryogenic processes, or regular industrial applications with temperature fluctuations, flexible couplings play a vital role in providing reliable power transmission and misalignment compensation.

In summary, flexible couplings can be effectively used in applications with varying operating temperatures, provided that the coupling’s design and material properties align with the specific temperature requirements of the application.

China Custom Ductile Iron Grooved Pipe Fitting Flexible Coupling FM, UL, CE Epoxy Red  China Custom Ductile Iron Grooved Pipe Fitting Flexible Coupling FM, UL, CE Epoxy Red
editor by CX 2023-08-14